Automatic Malicious Code Classification System through Static Analysis Using Machine Learning
نویسندگان
چکیده
منابع مشابه
Automatic classification of object code using machine learning
Recent research has repeatedly shown that machine learning techniques can be applied to either whole files or file fragments to classify them for analysis. We build upon these techniques to show that for samples of un-labeled compiled computer object code, one can apply the same type of analysis to classify important aspects of the code, such as its target architecture and endianess. We show th...
متن کاملMachine Learning Classification of Malicious Network Traffic
1.1. Intrusion Detection Systems. In our society, information systems are everywhere. They are used by corporations to store proprietary and other sensitive data, by families to store financial and personal information, by universities to keep research data and ideas, and by governments to store defense and security information. It is very important that the information systems that house this ...
متن کاملAutomatic Music Genres Classification using Machine Learning
Classification of music genre has been an inspiring job in the area of music information retrieval (MIR). Classification of genre can be valuable to explain some actual interesting problems such as creating song references, finding related songs, finding societies who will like that specific song. The purpose of our research is to find best machine learning algorithm that predict the genre of s...
متن کاملInformation Visualization and Machine Learning Applied on Static Code Analysis
Software engineers will possibly never see the perfect source code in their lifetime, but they are seeing much better analysis tools for finding defects in software. The approaches used in static code analysis emerged from simple code crawling to usage of statistical and probabilistic frameworks. This work presents a new technique that incorporates machine learning and information visualization...
متن کاملPredicting Source Code Quality with Static Analysis and Machine Learning
This paper is investigating if it is possible to predict source code quality based on static analysis and machine learning. The proposed approach includes a plugin in Eclipse, uses a combination of peer review/human rating, static code analysis, and classification methods. As training data, public data and student hand-ins in programming are used. Based on this training data, new and uninspecte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Symmetry
سال: 2020
ISSN: 2073-8994
DOI: 10.3390/sym13010035